## Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Ling-Na Sun and Chang-Wen

 Hu*The Institute for Chemical Physics and Department of Chemistry, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Correspondence e-mail: cwhu@bit.edu.cn

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.034$
$w R$ factor $=0.084$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## [ $\mu$-Pyruvic acid benzoylhydrazonato(2-)]bis[methanoldimethyltin(IV)]

In the title complex, $\left[\mathrm{Sn}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right]$, the $\mathrm{Sn}^{\mathrm{IV}}$ ion has a distorted pentagonal-bipyramidal coordination geometry. The carboxylate O atom bridges two $\mathrm{Sn}^{\mathrm{IV}}$ ions to form the dimeric complex, which is located on an inversion center. Hydrogen bonding between the methanol and carboxylate groups helps to stabilize the crystal structure.

## Comment

As a part of an investigation on organotin(IV) complexes we recently synthesized the title complex, (I), and present here its structure.

(I)

The $\mathrm{Sn}^{\mathrm{IV}}$ ion has a distorted pentagonal-bipyramidal coordination geometry, formed by one methanol molecule, two tridentate Schiff base ligands of pyruvic acid benzoylhydrazone and two methyl groups (Fig. 1). Atoms O1, O4, O1 ${ }^{\mathrm{i}}$, O 3 and N 1 are coplanar within $0.0220 \AA$ [symmetry code (i): $-x,-y+1,-z+2$ ], forming the equatorial plane. The carboxylate atom O 1 bridges two $\mathrm{Sn}^{\mathrm{IV}}$ ions to form the dimeric complex, which is located on an inversion center. The $\mathrm{Sn}-\mathrm{O} 1^{i}$ bond distance (Table 1) is significantly longer than the typical $\mathrm{Sn}-\mathrm{O}$ bond, but shorter than the sum of the van der Waals radii for Sn and O ( $3.68 \AA$; Bondi, 1964). Thus, the structure of this complex can be described as a weakly bridged dimer. The formation of the dimer leads to a short $\mathrm{O} \cdots \mathrm{O}^{\mathrm{i}}$ separation of 2.827 (2) $\AA$. The $\mathrm{Sn}-\mathrm{O}$ (methanol) bond distance is longer than those found in analogous complexes (Yin et al., 2003; Parulekar et al., 1989).

Hydrogen bonding between the methanol and carboxylate groups helps to stabilize the crystal structure (Table 2).

## Experimental

Pyruvic acid benzoylhydrazone ( 1 mmol ) and sodium ethoxide ( 1 mmol ) were added to dry benzene ( 20 ml ) in a Schlenk flask and

Received 12 December 2006
Accepted 1 February 2007


Figure 1
The molecular structure of (I), with $30 \%$ probability displacement ellipsoids [symmetry code (i): $-x,-y+1,-z+2$ ].
stirred for 0.5 h . Dimethyltin dichloride ( 1 mmol ) was added, and the reaction mixture was stirred for 12 h at 313 K and then filtered. The solvent was gradually removed by evaporation under vacuum until a solid product was obtained. The solid was then recrystallized from methanol and colorless single crystals were obtained. Elemental analysis, calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Sn}$ : C 40.52, H 4.68, N 7.27\%; found: C 40.31, H 4.73, N $7.40 \%$.

## Crystal data

$\left[\mathrm{Sn}_{2}\left(\mathrm{CH}_{3}\right)_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{O}\right)_{2}\right.$ ]
$M_{r}=769.96$
Monoclinic, $P 2_{1} / c$
$a=10.408$ (10) $\AA$
$b=18.910$ (17) $\AA$
$c=8.911$ ( 8 ) A
$\beta=115.346(15)^{\circ}$
$V=1585(3) \AA^{3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.470, T_{\text {max }}=0.750$

## Refinement

[^1] refinement

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

| Sn1-O1 | $2.312(3)$ | $\mathrm{Sn} 1-\mathrm{N} 1$ | $2.263(4)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ | $2.751(4)$ | $\mathrm{Sn} 1-\mathrm{C} 11$ | $2.094(5)$ |
| $\mathrm{Sn} 1-\mathrm{O} 3$ | $2.184(3)$ | $\mathrm{Sn} 1-\mathrm{C} 12$ | $2.094(5)$ |
| $\mathrm{Sn} 1-\mathrm{O} 4$ | $2.427(4)$ |  |  |
| $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 12$ | $161.5(2)$ | $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 4$ | $82.5(2)$ |
| $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 3$ | $96.22(19)$ | $\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 4$ | $77.39(14)$ |
| $\mathrm{C} 12-\mathrm{Sn} 1-\mathrm{O} 3$ | $96.15(19)$ | $\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{O} 4$ | $146.79(14)$ |
| $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{N} 1$ | $99.24(19)$ | $\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 4$ | $142.83(13)$ |
| $\mathrm{C} 12-\mathrm{Sn} 1-\mathrm{N} 1$ | $98.0(2)$ | $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ | $81.59(17)$ |
| $\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{N} 1$ | $69.44(14)$ | $\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ | $153.03(11)$ |
| $\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{O} 1$ | $90.07(18)$ | $\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ | $67.21(12)$ |
| $\mathrm{O} 3-\mathrm{Sn} 1-\mathrm{O} 1$ | $139.76(12)$ | $\mathrm{O} 4-\mathrm{Sn} 1-\mathrm{O} 1^{\mathrm{i}}$ | $75.68(13)$ |
| $\mathrm{N} 1-\mathrm{Sn} 1-\mathrm{O} 1$ | $70.31(13)$ |  |  |

Symmetry code: (i) $-x,-y+1,-z+2$.

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 4-\mathrm{H} 14 \cdots \mathrm{O}_{2}{ }^{\mathrm{i}}$ | $0.93(7)$ | $1.74(7)$ | $2.648(6)$ | $165(6)$ |

Symmetry code: (i) $-x,-y+1,-z+2$.
H atoms attached to C atoms were all positioned geometrically and treated as riding on their parent atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\text {eq }}(\mathrm{C})$ for the other C -bound H atoms. The H atom bonded to the O atom was refined isotropically, giving an $\mathrm{O}-\mathrm{H}$ distance of 0.93 (7) Å.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Fund Council of China (NSFC, Nos. 20331010, 20271007 and 90406002) and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP, No. 20030007014).

## References

Bondi, A. (1964). J. Phys. Chem. 68, 441-445.
Parulekar, C. S., Jain, V. K., Das, T. K., Gupta, A. R., Hoskins, B. F. \& Tiekink, E. R. T. (1989). J. Organomet. Chem. 372, 193-199.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1, Software Reference Manual. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Yin, H. D., Wang, C. H., Wang, Y., Ma, C. L. \& Shao, J. X. (2003). Chem. J. Chin. Univ. 24, 68-72.


[^0]:    (C) 2007 International Union of Crystallography All rights reserved

[^1]:    Refinement on $F^{2}$
    $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
    $w R\left(F^{2}\right)=0.084$
    $S=1.00$
    2809 reflections
    187 parameters
    H atoms treated by a mixture of independent and constrained

